Matematicas Selectividad Madrid 2012

Examen de Selectividad Junio 2012 – Matemáticas II – Madrid

Prueba de Acceso a las Enseñanzas Universitarias de Grado

Ejercicio 1 (Opción B): Dadas las funciones: f(x) = [3x + ln(x +1)]/√(x2 – 3); g(x) = (lnx)x, h(x) = sen(π – x). Se pide:

a)      (1 punto) Hallar el dominio de f(x) y el limx→∞f(x)

b)      (1 punto) Calcular g’(e)

c)       (1 punto) Calcular, en el intervalo (0, 2π), las coordenadas de los puntos de corte con el eje de abscisas y  las coordenadas de los extremos relativos de h(x)

Mejora Curricular Nota de Selectividad: INFÓRMATE AHORA 

Resolución (c): los demás apartados, se dejan para el alumno

Dado que h(x) = sen(π – x) y que sen θ = 0 si θ = 0º o θ = π rad, se tiene que:

π – x = 0 → x = π

π – x = π → x = 0

Coordenadas de corte con el eje de abscisas h(x) = 0, son (0, 0) y (π, 0)

Extremos relativos:

h’(x) = -cos (π – x) = 0 → x = π/2, x = 3π/2

h”(x) = -sen (π – x)

Sustituyendo:

h”(π/2) = -1 < 0, hay un máximo relativo en (x, y) = (π/2, 1)

h”(3π/2) = +1 > 0, hay un mínimo relativo en (x, y) = (3π/2, -1)

Preparación Ingreso en las Escalas de Oficiales Academias Generales

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s