Calculadora Promoción Oficiales y Suboficiales

Calculadora • Suboficiales y Oficiales Ejto. de Tierra

Novedades en relación al uso de calculadora en la PRUEBA DE CONOCIMIENTOS CIENTÍFICOS para el INGRESO POR PROMOCIÓN A LAS ESCALAS DE OFICIALES AGM Y SUBOFICIALES AGBS DEL CUERPO GENERAL DEL ET:

casio_fx82ms

Descargar manual Casio FX 82-MS

Descargar manual Casio FX 82-MS (pdf)

Anuncios

Matemáticas Escala de Oficiales

Matemáticas. Oposiciones Militares. Cambio de Escala

A continuación te mostramos como ejemplo, una cuestión correspondiente al temario actualizado Escala de  de Oficiales Promoción y Cambio de Escala Cuerpos Generales.

matematicas_promocion

Clases Presenciales • Cursos a Distancia • Exámenes Resueltos

temario-actualizado

Escala de Oficiales y Suboficiales Promoción Interna

Matemáticas Cuerpos de Ingenieros

Escala Técnica & Oficiales Cuerpos de Ingenieros

matematicas_ingenieros

 

Examen Matemáticas Promoción

Matemáticas. Probabilidad.  Oposiciones Militares.

A continuación te invitamos a contestar una cuestión sobre probabilidad, correspondiente al temario actualizado Escala de Suboficiales y Escala de Oficiales Promoción Interna y Cambio de Escala Cuerpos Generales.

matematicas-promocion-

Clases Presenciales • Cursos a Distancia • Exámenes Resueltos

temario-actualizado

Escala de Oficiales y Suboficiales Promoción Interna

Promoción Interna Suboficiales

Matemáticas • Escala de Suboficiales Ejto. Aire A:B.A. 2016

suboficiales_promocion_mat

Clases Presenciales • Curso a Distancia: Solicita Información

academias_militares

Temario Matemáticas Suboficiales Promoción

Temario Matemáticas Escala Suboficiales Promoción

Actualizado 2017 (según Boletín Oficial)

Asignatura: Matemáticas • Promoción Interna – Cambio de Escala

  1. Procesos, métodos y actitudes en matemáticas. Planificación del proceso de resolución de problemas. Estrategias y procedimientos puestos en práctica: relación con otros problemas conocidos, modificación de variables, suponer el problema resuelto. Soluciones y/o resultados obtenidos: coherencia de las soluciones con la situación, revisión sistemática del proceso, otras formas de resolución, problemas parecidos, generalizaciones y particularizaciones interesantes. Iniciación a la demostración en matemáticas: métodos, razonamientos, lenguajes, etc. Métodos de demostración: reducción al absurdo, método de inducción, contraejemplos, razonamientos encadenados, etc. Razonamiento deductivo e inductivo Lenguaje gráfico, algebraico, otras formas de representación de argumentos. Elaboración y presentación oral y/o escrita de informes científicos sobre el proceso seguido en la resolución de un problema o en la demostración de un resultado matemático. Realización de investigaciones matemáticas a partir de contextos de la realidad o contextos del mundo de las matemáticas. Elaboración y presentación de un informe científico sobre el proceso, resultados y conclusiones del proceso de investigación desarrollado. Práctica de los procesos de matematización y modelización, en contextos de la realidad y en contextos matemáticos. Confianza en las propias capacidades para desarrollar actitudes adecuadas y afrontar las dificultades propias del trabajo científico. Utilización de medios tecnológicos en el proceso de aprendizaje para: a) la recogida ordenada y la organización de datos; b) la elaboración y creación de representaciones gráficas de datos numéricos, funcionales o estadísticos; c) facilitar la comprensión de propiedades geométricas o funcionales y la realización de cálculos de tipo numérico, algebraico o estadístico; d) el diseño de simulaciones y la elaboración de predicciones sobre situaciones matemáticas diversas; e) la elaboración de informes y documentos sobre los procesos llevados a cabo y los resultados y conclusiones obtenidos. f) comunicar y compartir, en entornos apropiados, la información y las ideas matemáticas.
  2. Números y álgebra. Estudio de las matrices como herramienta para manejar y operar con datos estructurados en tablas y grafos. Clasificación de matrices. Operaciones. Aplicación de las operaciones de las matrices y de sus propiedades en la resolución de problemas extraídos de contextos reales. Determinantes. Propiedades elementales. Rango de una matriz. Matriz inversa. Representación matricial de un sistema: discusión y resolución de sistemas de ecuaciones lineales. Método de Gauss. Regla de Cramer. Aplicación a la resolución de problemas.
  3. Análisis. Límite de una función en un punto y en el infinito. Continuidad de una función. Tipos de discontinuidad. Teorema de Bolzano. Función derivada. Teoremas de Rolle y del valor medio. La regla de L’Hôpital. Aplicación al cálculo de límites. Aplicaciones de la derivada: problemas de optimización. Primitiva de una función. La integral indefinida. Técnicas elementales para el cálculo de primitivas. La integral definida. Teoremas del valor medio y fundamental del cálculo integral. Aplicación al cálculo de áreas de regiones planas.
  4. Geometría. Vectores en el espacio tridimensional. Producto escalar, vectorial y mixto. Significado geométrico. Ecuaciones de la recta y el plano en el espacio. Posiciones relativas (incidencia, paralelismo y perpendicularidad entre rectas y planos). Propiedades métricas (cálculo de ángulos, distancias, áreas y volúmenes).
  5. Estadística y Probabilidad. Sucesos. Asignación de probabilidades a sucesos mediante la regla de Laplace y a partir de su frecuencia relativa. Axiomática de Kolmogorov. Aplicación de la combinatoria al cálculo de probabilidades. Experimentos simples y compuestos. Probabilidad condicionada. Dependencia e independencia de sucesos. Teoremas de la probabilidad total y de Bayes. Probabilidades iniciales y finales y verosimilitud de un suceso. Variables aleatorias discretas. Distribución de probabilidad. Media, varianza y desviación típica. Distribución binomial. Caracterización e identificación del modelo. Cálculo de probabilidades. Distribución normal. Tipificación de la distribución normal. Asignación de probabilidades en una distribución normal.Cálculo de probabilidades mediante la aproximación de la distribución binomial por la normal.

Clases Presenciales • Curso a Distancia: Solicita Información

academias_militares

 

Temario Matemáticas Oficiales Promoción

Temario Matemáticas Escala Oficiales Promoción

Actualizado 2017 (según Boletín Oficial)

Asignatura: Matemáticas • Promoción Interna – Cambio de Escala

  1. Procesos, métodos y actitudes en matemáticas. Planificación del proceso de resolución de problemas. Estrategias y procedimientos puestos en práctica: relación con otros problemas conocidos, modificación de variables, suponer el problema resuelto. Soluciones y/o resultados obtenidos: coherencia de las soluciones con la situación, revisión sistemática del proceso, otras formas de resolución, problemas parecidos, generalizaciones y particularizaciones interesantes. Iniciación a la demostración en matemáticas: métodos, razonamientos, lenguajes, etc. Métodos de demostración: reducción al absurdo, método de inducción, contraejemplos, razonamientos encadenados, etc. Razonamiento deductivo e inductivo Lenguaje gráfico, algebraico, otras formas de representación de argumentos. Elaboración y presentación oral y/o escrita de informes científicos sobre el proceso seguido en la resolución de un problema o en la demostración de un resultado matemático. Realización de investigaciones matemáticas a partir de contextos de la realidad o contextos del mundo de las matemáticas. Elaboración y presentación de un informe científico sobre el proceso, resultados y conclusiones del proceso de investigación desarrollado. Práctica de los procesos de matematización y modelización, en contextos de la realidad y en contextos matemáticos. Confianza en las propias capacidades para desarrollar actitudes adecuadas y afrontar las dificultades propias del trabajo científico. Utilización de medios tecnológicos en el proceso de aprendizaje para: a) la recogida ordenada y la organización de datos; b) la elaboración y creación de representaciones gráficas de datos numéricos, funcionales o estadísticos; c) facilitar la comprensión de propiedades geométricas o funcionales y la realización de cálculos de tipo numérico, algebraico o estadístico; d) el diseño de simulaciones y la elaboración de predicciones sobre situaciones matemáticas diversas; e) la elaboración de informes y documentos sobre los procesos llevados a cabo y los resultados y conclusiones obtenidos. f) comunicar y compartir, en entornos apropiados, la información y las ideas matemáticas.
  2. Números y álgebra. Estudio de las matrices como herramienta para manejar y operar con datos estructurados en tablas y grafos. Clasificación de matrices. Operaciones. Aplicación de las operaciones de las matrices y de sus propiedades en la resolución de problemas extraídos de contextos reales. Determinantes. Propiedades elementales. Rango de una matriz. Matriz inversa. Representación matricial de un sistema: discusión y resolución de sistemas de ecuaciones lineales. Método de Gauss. Regla de Cramer. Aplicación a la resolución de problemas.
  3. Análisis. Límite de una función en un punto y en el infinito. Continuidad de una función. Tipos de discontinuidad. Teorema de Bolzano. Función derivada. Teoremas de Rolle y del valor medio. La regla de L’Hôpital. Aplicación al cálculo de límites. Aplicaciones de la derivada: problemas de optimización. Primitiva de una función. La integral indefinida. Técnicas elementales para el cálculo de primitivas. La integral definida. Teoremas del valor medio y fundamental del cálculo integral. Aplicación al cálculo de áreas de regiones planas.
  4. Geometría. Vectores en el espacio tridimensional. Producto escalar, vectorial y mixto. Significado geométrico. Ecuaciones de la recta y el plano en el espacio. Posiciones relativas (incidencia, paralelismo y perpendicularidad entre rectas y planos). Propiedades métricas (cálculo de ángulos, distancias, áreas y volúmenes).
  5. Estadística y Probabilidad. Sucesos. Asignación de probabilidades a sucesos mediante la regla de Laplace y a partir de su frecuencia relativa. Axiomática de Kolmogorov. Aplicación de la combinatoria al cálculo de probabilidades. Experimentos simples y compuestos. Probabilidad condicionada. Dependencia e independencia de sucesos. Teoremas de la probabilidad total y de Bayes. Probabilidades iniciales y finales y verosimilitud de un suceso. Variables aleatorias discretas. Distribución de probabilidad. Media, varianza y desviación típica. Distribución binomial. Caracterización e identificación del modelo. Cálculo de probabilidades. Distribución normal. Tipificación de la distribución normal. Asignación de probabilidades en una distribución normal.Cálculo de probabilidades mediante la aproximación de la distribución binomial por la normal.

Clases Presenciales • Curso a Distancia: Solicita Información

academias_militares